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ABSTRACT

The problem of turbulent flow past

in many technological applications and

case to evaluate the performance of

separated flows. It is well known

models of turbulence yield

point in this problem. By

a backward facing step is important

has been used as a standard test

turbulence models in the prediction of

that the commonly used K-E (and K-_)

inaccurate predictions for the reattachment

an analysis of the mean vorticity transport

equation, it will be argued that the intrinsically inaccurate prediction of

normal Reynolds stress differences by the

contributor to this problem. Computations

(which alleviates this deficiency) are

K-E and K-: models is a major

using a new nonlinear K-E model

made with the TEACH program.

Comparisons are made between the improved results predicted by this

nonlinear K-E model and those obtained from the linear K-E model as well as

from second-order closure models.
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1. INTRODUCTION

Among the various turbulence models in existence, the linear K-_

and K-_ models are the most widely used by scientists and engineers to

solve practical problems. The primary advantages of the models

include their broad invariance properties and the relatively simple

manner in which they can be incorporated into most existing

Navier-Stokes computer codes which allow for a variable viscosity (see

Speziale 1987). Furthermore, for unseparated turbulent boundary

layers, these linear K-t and K-E models have been shown to provide

excellent descriptions of the flow (see Rodi 1982).

However, one major drawback of the linear K-_ (and K-C) model is

that it yields highly inaccurate predictions for the normal Reynolds

stress differences. Consequently, for the types of turbulent flow

where the normal Reynolds stress differences play an important role

(such as secondary flows in a non-circular duct or separated flows),

the linear models can give rise to considerable inaccuracies. There

have been many efforts over the years to include nonlinear effects in

the modeling of the Reynolds stresses within a two-equation format

(see Lumley 1970, Launder and Ying 1971, Gessner and Emery 1976, and

Saffman 1977). However, these models do not exhibit the general

invariance necessary for the broadest range of application. Recently,

a nonlinear K-_ (and K-_) model was obtained by making an asymptotic

expansion subject to the constraints of dimensional and tensorial

invariance, realizability, and material frame-indifference in the



limit of two-dimensional turbulence (see Speziale 1987). This model

was shown to yield improved predictions for the normal Reynolds

stresses in internal flows which are unseparated. However, for any

proposed model to be sufficiently applicable, it has to be successful

in predicting turbulent flows which have separated regions since these

occur in a wide variety of problems which are of technological

importance.

In this study, the new nonlinear K-c model is incorporated into

the TEACH computer code in order to analyze the problem of a

two-dimensional turbulent flow past a backward facing step. Turbulent

flow past a backward facing step has served as a primary benchmark for

the performance of turbulence models in the prediction of separated

flows (c.f., Abbott and Kline 1962; Briggs, Mellor and Yamada 1977;

Kim, Kline and Johnston 1980; Eaton and Johnston 1981; Sindir 1982;

Celenligil and Mellor 1985; and Chen 1985). The nonlinear K-E model

will be shown to yield improved predictions for the reattachment point

and turbulence intensities. Comparisons between the computed

turbulence statistics and existing experimental data (along with the

predictions of other turbulence models) will be made. In addition,

the sensitivity of the results to the new empirical constant in the

nonlinear model will be examined along with the effect of the Oldroyd

derivative terms. The numerical results obtained will be discussed in

detail along with other prospective future research.



2. THE PHYSICAL PROBLEM

The problem to be considered in this study consists of the

turbulent flow of an incompressible viscous fluid past a backward

facing step (see Figure 1). The governing equations to be solved are

the Reynolds equation and the continuity equation which are of the

general form (c.f., Hinze 1975)

_v

( ~ -) _v2vP T_ +_'Zv :-ZP+ _+Z'! (1)

where

v.v = 0 (2)
~ ~

Mean velocity field

_ Mean pressure field

p z Density of the fluid

m Dynamic viscosity of the fluid

and T is the Reynolds stress tensor whose components are given by
N

_ij : -PUiUj
(3)

where u is the fluctuating part of the velocity field.
N

In order to achieve closure, equations relating the Reynolds

stress tensor to the global history of the mean velocity field are

needed. For the linear K-_ model of turbulence, the Reynolds stress

tensor is assumed to be of the form (see Hanjalic and Launder 1972)
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2 K2
= - _ p K 8ij + 2p C -- Di (4)Tij pE j

where

1

K - 2p _ii (5)

±)
Dij = _I a--_j+ ax i

(6)

are, respectively, the turbulent kinetic energy per unit mass, and the

mean rate of strain tensor. Here, _ is the dissipation rate of

turbulence, and C is a dimensionless constant which assumes an
p

approximate value of 0.09.

Typically, at high Reynolds numbers, the turbulent kinetic energy

and dissipation rate are modeled by transport equations (c.f.,

Hanjalic and Launder 1972) of the form

_ _.. _ + Cl a lj_ Ti aK
Dt p 1j @xj _ p E Tjm axm P j ax--j - e (7)

av 2

D_ C2 B (K @_ ] E i- - T.. m + C3 _.. C4 -- (8)
Dt p ax i E lJ _xj p-K 13 @xj K

where Cl, C2, C3, and C4 are dimensionless constants which take the

approximate values of 0.11, 0.15, 1.43, and 1.92, respectively.

The above set of equations are closed, and form the basis for the

linear K-_ model. Because of its simple structure, the K-E model can



be easily incorporated into any Navier-Stokes computer code which

allows for a variable viscosity. This feature, together with its

accurate predictions of thin turbulent shear flows (i.e., unseparated

turbulent boundary layers), has made the model very popular with

engineers and scientists (see Rodi 1982). Nevertheless, despite these

advantages, the K-m model is known to yield highly inaccurate

predictions for the normal Reynolds stresses. For example, in a fully

developed turbulent channel flow (see Figure 2), the linear K-m model

predicts that the normal Reynolds stresses are all equal, i.e., that

_xx = _yy Tzz (9)

which is in substantial contradiction of experimental data. To be

more specific, the experimental data of Laufer (1951) for turbulent

channel flow at a Reynolds number of 30,800 indicates that contrary to

(9),

-  xxll - Jl
0.5, YY Txx _ 2.5 (10)

ll xyll

where II'II denotes the maximum norm.

Such serious errors in the normal Reynolds stress difference (_yy

- • ) can yield significant inaccuracies in the calculation of a
XX

two-dimensional recirculating flow with the mean velocity

= u(x,y)i + v(x,y)_ (11)

A problem arises since such a flow is a solution of the vorticity

transport equation (which determines the mean velocity)



@_ a_ V2_ + a2(_yy-_xx )
By axay

a2_ B2T
+ xy _ xy

ax2 By2

(12)

where v _ _/p is the kinematic viscosity and

l

CO -

Bv Bu
Bx By

is the mean vorticity.

past a backward facing step (see Figure 1), the term

In the recirculation zone of turbulent flow

(13)

(which vanishes in a unidirectional mean turbulent flow or in an

unseparated turbulent boundary layer) is of a comparable order of

magnitude to the Reynolds shear stress terms on the right-hand-side of

(12). This arises from the fact that x-derivatives are of a

comparable order of magnitude to the y-derivatives and, as indicated

above, II_yy - _xxll > II _xyll in the recirculating zone. Hence, the

serious inaccuracies that arise from the linear K-E model in the

calculation of the reattachment point for the backward facing step

problem may be largely due to this modeling deficiency in the normal

Reynolds stresses (see Speziale 1987).

The linear K-_ model substantially underpredicts the reattachment

point for turbulent flow past a backward facing step as discussed

extensively at the 1980-81 AFOSR-HTTM Stanford Conference on

Turbulence (the separation length L/AH predicted by this model varies



from 5.2 to 5.5, whereas experiments indicate that it should be

approximately 7.0). As alluded to above, a significant cause of this

problem may arise from the inability of the linear K-c model to

predict normal Reynolds stress differences accurately. Recently,

Speziale (1987) derived a nonlinear generalization of the K-_ model

which takes the form

K2T.. = - p K6 + 2pC i _-_,1j ij _ j

+ 4 CD C2 K3 - 1 - -u p -2 (Dim Dmj - 3 DmnDmn6ij)

0

+ 4 CE C2 K3 _ 1 _mm6 )P -2 (Dij - 3 ij
(14)

where

Dij 2 _, Bxj Bx i

o avj
= lj + v.V Di 1 - -

Dij @t ~ ~ j Bxm Dmj axm Dmi

(15)

and CD = CE = 1.68. As a result of the presence of the Oldroyd

derivative term _ij and the quadratic terms in Dij' this nonlinear K-_

model is able to describe turbulent memory effects (it bears a certain

resemblance to the Rivlin-Ericksen fluids of viscoelastic
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+ 2 CD - CE ay Bx 1 au 2]

+ 4p CE C2 K3 I - a2_E-_ v 2By

(19)

K21au _v]_xy: pC m +m

K3 _ au _v

(2O)

_zz: - ] oK - 5 PCI_ 7 (CD-2CE)L LBx] LaY] + 5 Ty + Bx]j
(21)

In deriving (18) - (21), the continuity equation (2) given by

+ B = 0 (22)
Bx By

has been made use of. Equations (16) - (22) must be supplemented with

transport equations for K and s. For the problem under consideration,

turbulent diffusive effects can be neglected (see Chen 1985) and,

thus, the transport equations (7) - (8) can be simplified to the form



lO

L c j+ v - _xx _ + _ + +By p xy @-y @-_ Tyy @-y - _ (23 )

u a_ + v a_ : c3 _ au au _v av _ c4ax ay p-K Txx _-x + Txy Ty + _-x + _yy -K (24)

Equations (16) - (24) represent a closed system of equations for the

determination of the mean turbulent flow fields. Of course, these

equations must be solved subject to the appropriate boundary

conditions. For turbulent flow past a backward facing step, these

boundary conditions consist of fully-developed turbulent channel flow

sufficiently far upstream and downstream of the step. The law of the

wall is applied at the solid boundaries (c.f., Rodi 1982). More

details concerning the boundary conditions will be presented in the

next section where the numerical approach will be discussed.
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3. NUMERICAL METHOD

In this study, the Imperial Collegels TEACH (Teaching Elliptic

Axisymmetry Characteristics Heuristically) computer program will be

used since it was written for the calculation of recirculating flows

and performs reasonably well for such problems (see Lilley and Rhode

1982). Furthermore, because this program is based on the linear K-_

model, it is a relatively straightforward process to incorporate the

nonlinear K-_ model (this simply requires the addition of the

appropriate nonlinear terms where the Reynolds stresses appear).

The TEACH computer program will be implemented on the nonuniform

finite difference mesh shown in Fig. 3. This 166x73 finite difference

mesh spans 5 step heights upstream and 30 step heights downstream from

the step. The grids are uniform and extremely dense in the

recirculation region and in the vicinity of step corners in order to

conveniently calculate and adequately resolve the higher-order

velocity gradients. Special merits of the staggered grid system used

in the TEACH code are discussed in Gosman and Pun 1974, and Gosman and

!deriah 1976. The scheme is second-order accurate overall since the

first-order derivatives are evaluated by central differences over a

single mesh spacing (c.f., Roache 1972). However, in evaluating

second-order derivatives (which are needed in the nonlinear model),

this nonuniform mesh requires a more complex finite difference

expression which has a second-order accurate form given by
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f"(i) = 2 "

3
f(i)(a 3_+ A_) + f(i-1) A+

2 A2A+ _ (A+ + A_)

A+ - A_ |

+ f'(i) ( a+a_ )] (25)

where f(i) is any function, f'(i) is its first derivative, f"(i) is

its second derivative, A+ is the mesh spacing in the forward

direction, and A_ is the mesh spacing in the backward direction.

Equation (25) can be applied for the calculation of second partial

derivatives with respect to x or y (by invoking the continuity

equation, no mixed derivatives in x and y need to be calculated).

Since this finite-difference expression requires the value for f',

which is not exact, this expression is actually somewhat less than

second-order accurate. Hence, the application of equation (25) is

limited to outside of the recirculation zone where second derivative

contributions are small. Within, and immediately adjacent to, the

recirculation zone (where the mesh is uniform), fourth-order accurate

expressions for the first and second derivative terms in the Reynolds

stresses are used that are given by

f'(i) = -f(i+2) + 8f(i+1) - 8f(i-1) + f(i-2)
12A

(26)

f"(i) : -f(i+2) + 16f(i+1) - 3Of(i) + 16f(i-1) - f(i-2)

12A 2
(27)
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A top hat filtering scheme is used to smooth any numerical

fluctuations which arise due to the-steep velocity gradients. The

reader is referred to Isaacson and Keller (1966) for more details on

these numerical representations.

In the TEACH code, the governing equations for the linear K-c

model are the continuity equation, the x and y components of the

Reynolds equation, and the kinetic energy and dissipation rate

transport equations as given in the previous section. The Poisson

equation for pressure (obtained by taking the divergence of the

Reynolds equation (1)) is also used since the solution procedure here

is based on primitive variables (i.e., is based on pressure-velocity

as opposed to the stream function-vorticity approach). Since the

problem considered is at very high Reynolds numbers (above 100,000),

the contributions of the diffusion terms in the transport equations

for K and _ are quite small and can be neglected. For more details on

this general numerical method, the reader is referred to Lilley and

Rhode (1982).

The governing equations for the nonlinear K-c model are the same

as for the linear model except for the differences in the expressions

for the Reynolds stresses. Since the additional nonlinear terms in

the Reynolds stresses are not extremely large, they are simply treated

as added source terms in the TEACH code. It should be noted that the

variables
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- - au au av 3v K, cu, v, ax' ax'

are already calculated for the linear K-_ model and, hence, are

generated by the basic TEACH code. The only new variables that need

to be calculated are the second derivatives of the velocity fields

a2u B2 u B2 v B2v

Bx 2 ' By2 ' 3x 2 ' 3y2

Inside the recirculation region, these second derivatives are computed

by the fourth-order accurate finite difference scheme given by

equation (27). A lower-order accurate scheme was tried, but it

yielded some fluctuations in these derivative fields (especially

within the recirculation zone) due to its inability to resolve the

steep velocity gradients. This problem persisted (although to a

substantially lesser extent) even with the higher-order accurate

scheme and therefore a smoothing filter was employed. As alluded to

earlier, a top hat filter was used. This filter can be applied to a

field more than one time, yielding a smoother result after each pass.

The velocity fields are filtered once before they are used in

evaluating first and second derivatives. As mentioned before, a

fourth-order accurate expression is also used to calculate the first

derivatives within the recirculation zone in the nonlinear Reynolds

stress calculations. It should be noted that at the solid boundaries,

an outward Taylor expansion is used to evaluate the derivatives.
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After obtaining the first and second order derivatives, the nonlinear

part of each Reynolds stress is readily obtained from equations (18) -

(21). In order to incorporate these nonlinear Reynolds stress terms

into the program, the linear representations for the Reynolds stresses

were located in the various parts of the TEACH code, and the nonlinear

terms were added in an appropriate fashion.

Computations were conducted in a channel with an expansion ratio

of 3:2 at a Reynolds number of approximately 132,000 (based on the

upstream centerline mean velocity and downstream channel width). The

program was run with an automatic vectorizer on the CYBER 205 computer

at the University of Georgia. Iterations were performed until a

converged solution was obtained based on a residual source criterion

(see Lilley and Rhode 1982). Approximately 90 minutes of CPU time

were required on a 166x73 mesh for the nonlinear K-c model to

converge, whereas only about 45 minutes were needed for the linear K-E

model. The number of steps required for a converged solution depends

on the model and the input conditions and varied from 400 to 1000

iterations. The closer that the initial guess of the variable fields

is to the actual solution, the less iterations are needed. However,

by a comparison of the rate that the residual sources decrease, it was

clear that the nonlinear model converges at a slower rate than the

linear model. This is not very surprising considering the fact that

the nonlinear K-E model contains Reynolds stress relaxation terms

which are dispersive rather than dissipative. The detailed numerical

results obtained will be discussed in the next section.
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4. DISCUSSION OF THE RESULTS

We will now present the computed results obtained for turbulent

flow over a backward facing step for a Reynolds number Re = 132,000

and an expansion ratio of 3:2. The computed streamlines and mean

velocity profiles obtained from the linear K-E model are shown in Fig.

4 which clearly indicate a reattachment length of L/AH = 5.5 -- a

value in the range of previously conducted computations. This

compares rather unfavorably to the experimental value of L/_H = 7.0

(see Kim, Kline, and Johnston 1980). The nondimensional turbulence

intensity (u--u)1/2 and shear stress u--vobtained from the linear K-E

model are shown in Figs. 5-6 alongside the available experimental data

(reliable experimental data is not available for the recirculation

zone). The computed streamlines and mean velocity profiles obtained

from the nonlinear K-_ model, shown in Fig. 7, clearly demonstrate an

improved prediction for the reattachment point of L/AH = 6.4. This

improvement is probably due to the better prediction of the turbulence

intensities in the recirculation zone (the reader should compare Figs.

8-9 with Figs. 5-6). However, since no reliable Reynolds stress data

is available inside the recirculation zone (due to flow oscillations),

the present conclusion must rest on comparisons of data from Kim,

Kline, and Johnston (1980) downstream of the reattachment point.

Comparisons will now be made between the results of the nonlinear

K-_ model and those obtained from second-order closure models. As

shown in Fig. 10, the second-order closure model of Briggs, Mellor,
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and Yamada (1977) predicts a reattachment length of L/aH = 8.0 (it

should be noted, however, that in a more recent study of this model

conducted by Celenligil and Mellor 1985, a result L/aH = 7.7 was

claimed which is of a comparable accuracy to the result of L/AH = 6.4

predicted by the nonlinear K-E model). The reasons for this

compatibility are more apparent when Reynolds stress results are

compared. As shown in Fig. 11, the turbulence intensity predictions

of the nonlinear K-_ model and the second-order closure model are in

good qualitative agreement throughout the unseparated flow. The

turbulent shear stress predictions shown in Fig. 12 are not in as good

agreement inside the recirculation zone (it is unfortunate that no

reliable data is available in this region in order to make a critical

comparison). However, in so far as the reattachment point is

concerned, it is clear that the nonlinear K-_ model yields comparably

good, if not better, results to second-order closure models with the

need for substantially less calculations (second-order closure models

require a higher level of computation since transport equations must

be solved for each component of the Reynolds stress tensor).

The nonlinear K-_ model examined herein introduces two new

empirical constants, CD and CE, in equation (14). These constants

were found to assume a value of 1.68 by correlating with experimental

data for normal Reynolds stress differences in turbulent channel flow

(Speziale 1986). However, the accuracy of this data is somewhat

questionable; errors of the order of 10% can easily occur.

Consequently, calculations were performed to test the sensitivity of
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the computed results to the precise value of CD and CE. For this

purpose, the computations were repeated for CD = CE = 1.40. The

computed streamlines and turbulence intensity for this case are

compared with the previous computations in Figs. 13 - 14. There is no

significant difference in the two results, indicating that even a 15%

error in the predicted value of CD and CE would have little effect on

the major conclusions of this study.

Computer runs were also made for the nonlinear K-E model where

the second-order derivative terms of the mean velocity arising from

the Oldroyd derivative in (14) are set to zero (such a resulting model

bears a qualitative resemblance to previous nonlinear models proposed

by Lumley 1970 and Saffman 1977). As shown in Fig. 15, without the

second-order derivatives, the resulting reattachment length reduces a

significant amount to a value of L/AH : 6.0. This shortening of L/AH

is not unexpected since the second derivative terms have a dispersive

character which would reduce the dissipation in the separated zone

allowing it to expand. It is rather surprising, however, that the

elimination of the second derivative terms had a relatively small

effect on the turbulent stress intensity shown in Fig. 16. Since the

second derivative terms generally are of a comparable order of

magnitude to the first derivative terms squared (see equations (18) -

(21)), one might expect the contribution of these terms to be more

significant in the turbulence intensity predictions. Hence

considering their substantial impact on the reattachment point, the

most dominant contribution of the second derivative terms must be in
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the prediction of normal Reynolds stress differences (quantities which

play an important role in the calculation of a recirculating flow as

discussed earlier). Thus, it is clear that the Oldroyd derivative

(which distinguishes this new nonlinear K-E model from all previous

such nonlinear models) plays a significant role in the turbulent

backward facing step calculation.

Unfortunately, as discussed in Section 3, the accurate evaluation

of higher-order derivatives is extremely difficult even with a

fourth-order accurate finite difference scheme. In this study, a top

hat filter was used to alleviate some localized numerical fluctuations

in these derivatives. Since the top hat filter is an averaging

algorithm, it also somewhat reduces the steep velocity gradients in

the flow, thus adding to the problem of numerical accuracy. However,

this problem is a localized one and any adverse consequences of

filtering appears to be in the direction of underpredicting the

reattachment point as a result of smoothing. Some initial

computations that were conducted without filtering (which must be

viewed with suspicion as a result of fluctuations in the second

derivative terms) yielded a reattachment length of L/AH : 6.7. Thus,

it appears that the more accurate calculation of the second

derivatives is likely to bring the computed results of this study in

closer agreement with experimental observations. It is our opinion,

however, that such improvements in the numerical algorithm are

unlikely to make more than a 5 or 6% change in the numerical results

presented herein.
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5. CONCLUSIONS

The nonlinear K-E model examined in this study has been shown to

yield considerably improved predictions for the reattachment point for

turbulent flow past a backward facing step. To be specific, the

nonlinear K-_ model was shown to predict a separation length of

L/AH = 6.4 as compared to the experimental value of L/AH = 7.0. This

result constitutes a substantial improvement on the value of L/AH in

the range of 5.2 - 5.5 predicted by the linear K-_ model and is of a

comparable accuracy to results obtained from the substantially more

complicated second-order closure models (e.g., Celenligil and Mellor

1985 obtained a separation length of L/AH = 7.7). From an analysis of

the mean vorticity transport equation, it was argued that these

improved results probably arise from the nonlinear K-E model's ability

to predict normal Reynolds stress differences more accurately. While

there is no reliable experimental data for the Reynolds stresses

inside the recirculation zone, the results obtained from the nonlinear

K-E model are in the range of those obtained from second-order closure

models and appear to constitute an improvement over those predicted by

the linear K-_ model.

Several questions about the accuracy of the numerical results

presented in this study still need to be resolved as is true of most

numerical studies of the backward facing step problem. The TEACH code

has certain undesirable features in its convergence properties when

terms (such as the nonlinear contributions to the Reynolds stresses)
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which are not purely dissipative are added. Furthermore, as a result

of the large velocity gradients in the recirculation region, it was

extremely difficult to calculate higher order derivatives of the

velocity field in a highly accurate fashion. However, as a direct

consequence of the smoothing properties of the top hat filter, it

appears that any errors in the computed reattachment point would be in

the direction of underprediction, thus, putting the results obtained

herein in closer agreement with the experimental data. Nonetheless,

it would be useful to check these results using several alternative

numerical algorithms. Likewise, it would be of value to consider

other geometries. Unfortunately, such investigations are beyond the

scope of the present study and must await future research. Although

several questions remain to be answered, the results obtained in this

study are extremely encouraging and strongly support the pursuit of

future investigations of this nonlinear K-E model which may prove to

be of considerable value in the future analysis of a variety of

turbulence problems.
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FIGURE 2. Fully-developed turbulent chennel flow.
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